
Attacking the Brain: Races in the SDN Control Plane

Lei Xu1, Jeff Huang1, Sungmin Hong1, Jialong Zhang1,2, and Guofei Gu1

1Texas A&M University, {xray2012,jeffhuang,ghitsh,guofei}@tamu.edu
2IBM Research, Jialong.Zhang@ibm.com

Abstract

Software-Defined Networking (SDN) has significantly

enriched network functionalities by decoupling pro-

grammable network controllers from the network hard-

ware. Because SDN controllers are serving as the brain

of the entire network, their security and reliability are of

extreme importance. For the first time in the literature,

we introduce a novel attack against SDN networks that

can cause serious security and reliability risks by exploit-

ing harmful race conditions in the SDN controllers, simi-

lar in spirit to classic TOCTTOU (Time of Check to Time

of Use) attacks against file systems. In this attack, even

a weak adversary without controlling/compromising

any SDN controller/switch/app/protocol but only hav-

ing malware-infected regular hosts can generate exter-

nal network events to crash the SDN controllers, disrupt

core services, or steal privacy information. We develop

a novel dynamic framework, CONGUARD, that can ef-

fectively detect and exploit harmful race conditions. We

have evaluated CONGUARD on three mainstream SDN

controllers (Floodlight, ONOS, and OpenDaylight) with

34 applications. CONGUARD detected totally 15 previ-

ously unknown vulnerabilities, all of which have been

confirmed by developers and 12 of them are patched with

our assistance.

1 Introduction

Software-Defined Networking (SDN) is rapidly chang-

ing the networking industry through a new paradigm of

network programming, in which a logically centralized,

programmable control plane, i.e., the brain, manages a

collection of physical devices (i.e., the data plane). By

separating data and control planes, SDN enables a wide

range of new innovative applications from traffic engi-

neering to data center virtualization, fine-grained access

control, and so on [16].

Despite the popularity, unfortunately, SDN has also

changed the attack surface of traditional networks. An

SDN controller and its applications maintain a list of

network states such as host profile, switch liveness, link

status, etc. By referencing proper network states, SDN

controllers can enforce various network policies, such as

end-to-end routing, network monitoring, and flow bal-

ancing. However, referencing network states is under the

risk of introducing concurrency vulnerabilities because

external network events can concurrently update the in-

ternal network states.

In this paper, we present a new attack, namely state

manipulation attack, in the SDN control plane that is

rooted in the asynchronism of SDN. The asynchronism

leads to many harmful race conditions on the shared net-

work states, which can be exploited by the attackers to

cause denial of services (e.g., controller crash, core ser-

vice disruption) and privacy leakage, etc. On the sur-

face, this is similar to the well-known TOCTTOU (Time

of Check to Time of Use) attacks [46, 14, 12] against

file systems. However, this attack is closely tied to the

unique SDN semantics, which makes all popular SDN

controllers (e.g., Floodlight [1], ONOS [3], and Open-

Daylight [4]) vulnerable. Consider a real example we

discovered in the Floodlight controller in Figure 1. When

the controller receives a SWITCH_JOIN event, it updates a

network state variable (i.e., switches) to store the profile

of the joining switch. Shortly, the LinkDiscoveryMan-

ager application fetches the activated switch information

from switches to discover links between switches. How-

ever, a SWITCH_LEAVE event can concurrently remove

the profile of the activated switch in switches. If the op-

eration at line 4 is executed before that at line 8, it will

trigger a Null-Pointer Exception (NPE) when the null

switch object is dereferenced at line 9, which leads to

the crash of the thread and eventually causes Denial-of-

Service (DoS) attacks on the controller.

The root cause of this vulnerability is a logic flaw in

the implementation of Floodlight that permits a harmful

race condition. In the SDN control plane, race condi-

switchAdded(){

1: this.switches.put(dpid, sw);

}

…

switchStatusChanged(){

2: addUpdateToQueue(update);

}

run(){

5: update = updates.take();

6: update.dispatch();

}

…

Dispatch(){

7: listener.switchActivated();

}

addUpdatetoQeueue(update){

3: this.updates.put(update);

}

switchActivated(){

8: sw=switchService.getSwitch(dpid);

9: sw.getEnabledPortNumber();

}

getSwitch(dpid){

10: return this.switches.get(dpid);

}

Controller

LinkDiscoveryManager

OFSwitchManager

Controller

OFSwitchManager

switchDisconnected(){

4: this.switches.remove(dpid);

} OFSwitchManager

NIO thread

(Switch Connection)
Main Thread

(Loopper)

Race Condition !

SWITCH_JOIN

SWITCH_LEAVE

Event

dispatching

Event

dispatching

NPE

Figure 1: A harmful race condition in Floodlight v1.1.

tions are common due to a massive number of network

events on the shared network states. To meet the perfor-

mance requirement, the event handlers in the SDN con-

troller may run in parallel, which allows race conditions

on the shared network states. By design, all such race

conditions should be benign since they are protected by

mutual exclusion synchronizations and do not break the

consistency of the network states. However, in practice,

many of these race conditions become harmful races be-

cause it is difficult for the SDN developers to avoid logic

flaws such as the one in Figure 1.

The key insight of State Manipulation Attack is that

we can leverage the existence of such harmful race con-

ditions in SDN controllers to trigger inconsistent net-

work states. Nevertheless, a successful attack requires

tackling two challenging problems:

• First, how to locate such harmful race conditions in

the SDN controller source code?

• Second, how to trigger the harmful race conditions

by an external attacker who has no control of the

controller schedule?

For the first problem, the key challenges are that it is

generally unknown if a race condition is harmful or not,

and that detecting race conditions in a program is gen-

erally undecidable. Although many data race detectors

have been developed for different domains [18, 32, 22,

19, 31, 36], there is no existing tool to detect race con-

ditions in the SDN controllers. We note that race condi-

tions are different from data races but are a more general

phenomenon; while data races concern whether accesses

to shared variables are properly synchronized or not, race

conditions concern about the memory effect of high-level

races, regardless of synchronizations. For example, a

data race detector cannot find the race condition in Fig-

ure 1 because the accesses to the switches variable are all

protected by synchronization. Moreover, in SDN con-

trollers there are many domain-specific happens-before

rules. These rules must be properly modeled in a race

detector; otherwise, a large number of false alarms will

be reported. Therefore, conventional data race detectors

are inadequate to find race conditions in SDN controllers.

To address this problem, we develop a technique

called adversarial state racing to detect harmful race

conditions in the SDN control plane. Our key observa-

tion is that harmful race conditions are commonly rooted

by two conflicting operations upon shared network states

that are not commutative, i.e., mutating the scheduling

order of them leads to a different state though the two op-

erations can be well-synchronized (e.g., by using locks).

Because there is no pre-defined order between the two

conflicting operations, we can hence actively control the

scheduler (e.g., by inserting delays) to run an adversar-

ial schedule, which forces one operation to execute after

another. If we observe an erroneous state (e.g., an ex-

ception or a crash) in the adversarial schedule, we have

found a harmful race condition.

For the second problem, the key challenge is that a

harmful race condition occurs very rarely in normal oper-

ations, but relies on a combination of a certain input and

an unexpected thread schedule to manifest. As the adver-

sary typically has no control of the machine or operating

system running the SDN controllers, even if a harmful

race condition is known, it is difficult for an adversary to

create the input and schedule combination to trigger the

harmful race condition.

Nevertheless, we show that an adversary can remotely

exploit many harmful race conditions with a high success

ratio by injecting the “right” external events into the SDN

network. Because SDN controllers define an event han-

dler to process each network event, a correlation between

external network events and their corresponding event

handlers can be established by analyzing the controller

source code. By further mapping the event handlers to

their operations, we can correlate the conflicting opera-

tions in a harmful race condition to their corresponding

network events. An adversary can then generate many

sequences of these network events repeatedly to increase

the chance of hitting a right schedule to trigger the harm-

ful race condition.

We have designed and implemented a framework

called CONGUARD for exploiting concurrency vulnera-

bilities in the SDN control plane, and we have evaluated

it on three mainstream open-source SDN controllers –

Floodlight, ONOS, and OpenDaylight, with 34 applica-

tions in total. CONGUARD found 15 previously unknown

harmful race conditions in these SDN controllers. We

show that these harmful race conditions can incur serious

reliability issues and remote attacks to the whole SDN

network. Some attacks can be mounted by compromised

hosts/virtual machines within the network, and some of

them are possible if the SDN network uses in-band con-

trol messages1 even when those messages are protected

by SSL/TLS.

We highlight our key contributions as follows:

• We present a new attack on SDN networks by ex-

ploiting the harmful race conditions in the SDN

control plane, which can be triggered by asyn-

chronous network events in unexpected schedules.

• We design CONGUARD, a novel framework to pin-

point and exploit harmful race conditions in SDN

controllers. We present a causality model that cap-

tures the domain-specific happens-before rules of

SDN, which significantly increases the precision of

race detection in the SDN control plane.

• We present an extensive evaluation of CONGUARD

on three mainstream SDN controllers. CONGUARD

has uncovered 15 previously unknown vulnerabil-

ities that can result in both security and reliability

issues. All these vulnerabilities were confirmed by

the developers. By the time of writing, we have al-

ready assisted the developers to patch 12 of them.

The rest of the paper is organized as follows: Section 2

introduces background. Section 3 discusses the state ma-

nipulation attack. Section 4 and Section 5 describe the

design and implementation of our CONGUARD frame-

work. Section 6 evaluates CONGUARD. Section 7 dis-

cusses defense mechanisms to mitigate this kind of at-

tacks. Section 8 discusses limitations of our approach

and future work. Section 9 reviews related work and Sec-

tion 10 concludes this paper.

2 Background

In this section, we introduce the necessary background of

SDN in order to understand the harmful race conditions

in this domain.

The heart of SDN is a logically centralized control

plane (i.e., SDN controllers) that is separated from the

data plane (i.e., SDN switches). The programmable

SDN controllers allow the network administrators to per-

form holistic management tasks, e.g., load-balancing,

network visualization, and access control. OpenFlow [6]

is the dominant communication protocol between the

1There are two deployment options for SDN/OpenFlow networks,

i.e., out-of-band option and in-band option. The out-of-band option

requires a separated physical network for control traffic. In contrast,

the in-band option allows OpenFlow switches also forward the SDN

control traffic, which is a more convenient and cost-efficient way for

large area networks [6, 13].

User App 1Service Apps

SDN Control Plane

Event

Provider

Storage

Event

Handlers

Storage

Event

Handlers

Storage

Event

Handlers

……

User App N

Service

Functions

SDN Data Plane

Network EventsAdmin Events

(e.g. REST Reqs)

Network Events

Figure 2: The abstraction model of the SDN control

plane .

SDN control plane and the data plane. In this paper, we

may use SDN and OpenFlow interchangeably.

The SDN control plane embraces a concurrent modu-

lar model. As shown in Figure 2, the SDN control plane

embeds various modules (also known as applications) to

enforce various network management policies, e.g., traf-

fic engineering, virtualization, and access control. An

SDN application manages a set of network states and

provides service functions for other applications to ref-

erence the managed network states. For example, an ac-

cess control application can install access control rules to

all activated switches by querying the switch state from a

switch manager application in the SDN controller. Also,

each application operates in an event-driven fashion that

implements handlers to process its corresponding events.

It will update its managed network states when it receives

corresponding network events.

Also, some applications, namely service applications,

in the SDN control plane paraphrase external network

events (i.e., OpenFlow messages) to its own internal net-

work events and dispatch them to other applications’

event handlers. For example, when a switch manager

application recognizes that a new OpenFlow-enabled

switch2 has joined the network, it issues a SWITCH_JOIN

event to all corresponding handlers for policy enforce-

ment. In addition, a network administrator can configure

the SDN controller via REST APIs, which we call ad-

ministrative events in the paper.

Table 1 shows several network-related events and ad-

ministrative events in the SDN control plane. In this pa-

per, we focus on these network events because they are

2Without specific description, all term “switch” in this paper refer

to OpenFlow-enabled switch.

Table 1: Common network events in SDN controllers.

Entity Events

HOST JOIN, LEAVE

SWITCH JOIN, LEAVE

Network PORT UP, DOWN

LINK UP, DOWN

OFP PACKET_IN, OFP_PORT_STATUS, etc

Admin REST HOST_CONFIG, CREATE_VIP, etc

commonly supported in all SDN controllers and they can

be purposely generated by remote adversaries to exploit

the race condition vulnerabilities.

We also note that certain events form implicit causal

relationships. For example, a SWITCH_LEAVE event

can implicitly trigger corresponding LINK_DOWN and

HOST_LEAVE events. These implicit causal relationships

must be captured to reason about race conditions in the

SDN control plane. We present a comprehensive model

of such causal relationships in Section 4.1.1.

3 State Manipulation Attacks

In this section, we present state manipulation attacks in

SDN networks by exploiting harmful race conditions.

We first present the threat model and explain how an ex-

ternal adversary can generate various network events in

an SDN network. We then discuss two vulnerabilities

related to harmful race conditions that we discovered in

existing SDN controllers, and we show how an attacker

can exploit them to steal privacy information and disrupt

important services of SDN networks. We will discuss

more vulnerabilities found in our experiments in Section

6.

3.1 Threat Model

We consider two scenarios: non-adversarial and adver-

sarial. In a non-adversarial case, a harmful race condition

in the SDN control plane can happen rarely under nor-

mal network operation by asynchronous events as listed

in Table 1.

In contrast, in an adversarial case, the adversary could

identify the harmful race conditions in the SDN con-

troller source code and externally trigger them by con-

trolling compromised hosts or virtual machines (e.g., via

malware infection) with the system privilege to control

network interfaces.

We do not assume that the adversary can compromise

SDN controllers or switches, and we do not assume the

adversary can compromise SDN applications or proto-

cols. That is, we consider operating systems of SDN con-

trollers and switches are well protected from the adver-

sary, and the control channels between SDN controllers

and SDN switches, as well as administrative manage-

ment channels between administrators and SDN con-

trollers, e.g., REST APIs, can be properly protected by

SSL/TLS, which is particularly important when the SDN

network is configured to use in-band control messages.

As we discuss in Section 6.5, some of our attacks are

possible even when the network is configured to use out-

of-band control messages. For those attacks that assume

in-band control messages, we assume control messages

are properly protected by SSL/TLS.

3.2 Adversarial Event Generation

Host-related events (HOST_JOIN, HOST_LEAVE, and

OFP_PACKET_IN) can be easily generated by an attacker

from a compromised host or virtual machine without any

knowledge about the switch. More specifically, to gen-

erate HOST_JOIN and HOST_LEAVE events, the attacker

can simply enable/disable the network interface linked

to a switch. The attacker can also send out crafted pack-

ets with randomized IP and MAC addresses to force a

table miss in the switch’s flow table3, which can trig-

ger OFP_PACKET_IN events. Switch port events (i.e.,

PORT_UP and PORT_DOWN) can also be indirectly gener-

ated by network interface manipulation (up and down)

from a connected compromised host by using interface

configuration tools, e.g., ifconfig.

In addition, an attacker can generate switch-dedicated

events (i.e., SWITCH_JOIN and SWITCH_LEAVE) atop

an in-band deployment of SDN networks. Even con-

trol messages are well protected by SSL/TLS, the at-

tacker could still find important communication informa-

tion (e.g., TCP header fields and types of control mes-

sages) between an SDN controller and switches by uti-

lizing legacy techniques such as TCP/IP header analy-

sis, size-based classification (given fixed size of control

messages), etc. Then, the attacker may launch TCP ses-

sion reset attacks [49] or drop control messages to dis-

rupt the connection to generate SWITCH_LEAVE, thereby

incurring SWITCH_JOIN subsequently. For example, as

shown in Figure 3, we can use TCP reset to generate a

SWITCH_LEAVE event in the Floodlight controller.

19:51:05.691 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #11] Disconnecting switch

[00:00:00:00:00:00:00:01 from 192.168.1.102:59537] due to IO Error: Connection reset by peer

19:51:05.692 WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.

19:51:05.692 INFO [n.f.c.i.OFChannelHandler:New I/O worker #11] [[00:00:00:00:00:00:00:01 from

192.168.1.102:59537]] Disconnected connection

Figure 3: SWITCH_LEAVE event generated by TCP

Resets.

3An OpenFlow switch reports all packets to the SDN control plane

if those packets do not hit its existing flow rule table.

3.3 Attack Cases

Here, we discuss two attack cases exploiting harmful

race conditions we detected in the LoadBalancer appli-

cation of the Floodlight controller and DHCPRelay ap-

plication of the ONOS controller.

Internet 1

2

3 4

Server Replica

(10.0.0.4)
Client

(10.0.0.1)

Switch 2Switch 1 Switch 3

5

SWITCH

LEAVE

Floodlight

(LoadBalancer)
Control Plane

Data Plane

Figure 4: Attacking the Floodlight LoadBalancer.

3.3.1 Stealing Privacy Information

Figure 4 shows the workflow of the Floodlight LoadBal-

ancer application. 1© A client sends out a service re-

quest packet with the virtual IP address (10.10.10.10) of

server. 2© Switch 1 issues an OFP_PACKET_IN event to

Floodlight controller to report a table-miss packet. 3©
The OFP_PACKET_IN handler selects a service replica

(10.0.0.4) to process the request and installs inbound

flow rules in each switch along the route from the client

to the replica. In addition, for routing and privacy pur-

poses, an extra flow rule is installed into switch 1 to

convert the destination IP address of packets from vir-

tual IP address (10.10.10.10) to physical IP address of

the replica (10.0.0.4). 4© The OFP_PACKET_IN handler

also installs outbound flow rules from the service replica

to the client and restores the virtual IP address on Switch

1 (i.e., from 10.0.0.4 to 10.10.10.10). 5© As a result,

the client can successfully communicate with the server

replica.

We found a harmful race condition in this application,

i.e., a concurrent SWITCH_LEAVE event from any switch

along the routing path can trigger an internal exception

of the Floodlight controller and further violate the policy

enforcement from step 3© to step 4©. If that happens,

no source IP address conversion rule (from 10.10.10.10

to 10.0.0.4) will be installed in switch 1. As a result, the

sensitive physical IP address information is disclosed to

the client which sent requests to the public service. We

detail more about the exploitation of such vulnerability

in Section 6.6.

DHCP ServerONOS Controller

(DHCPRelay)

Attacker

Discovery
Discovery

Response

HOST_LEAVE

Request
Request

Offer

…

HOST_LEAVE

T
im

e

Figure 5: Attacking the ONOS DHCPRelay application.

3.3.2 Disrupting Packet Processing Service

In order to provide a DHCP service in different sub-

nets, the DHCPRelay application in the ONOS controller

relays DHCP messages between DHCP clients and the

DHCP server. However, due to a harmful race condi-

tion, a conflicting HOST_LEAVE event can manipulate the

internal state of the host, which may result in an un-

expected exception and further disrupt the packet pro-

cessing service when the DHCPRelay application relays

DHCP response/offer messages to the sender, as illus-

trated in Figure 5. The root cause of this vulnerability lies

in that the host state variable referenced by DHCPRelay

application can be nullified by a HOST_LEAVE event. We

detail more about such attack in Section 6.6.

4 CONGUARD Overview

In this section, we present our framework, CONGUARD,

for detecting and exploiting the race condition vulnera-

bilities in SDN controllers. CONGUARD contains two

main phases: (i) locating harmful race conditions in the

controller source code by utilizing dynamic analysis and

adversarial state racing, (ii) triggering harmful race con-

ditions in the running SDN controller by remotely inject-

ing right external network events with the proper timing.

4.1 Pinpointing Harmful Race Conditions

To locate harmful race conditions, our basic idea is to

use dynamic analysis to first detect a superset of poten-

tially harmful race conditions, and then use adversarial

state racing to manifest those real harmful ones. More

specifically, given a target SDN controller, we first ana-

lyze its dynamic behavior (by generating network events

as inputs to it and then tracing the execution) to de-

tect race conditions consisting of two race operations

on a shared network state. These two operations may

or may not have a common lock protecting them, but

there should not be any predefined order causality be-

tween them. Then, for each pair of such operations, we

re-run the SDN controller but force it to follow an erro-

neous schedule to check if a race condition is harmful or

not.

In this step, there are two major challenges:

• First, how to avoid reporting a myriad of race warn-

ings that are in fact false alarms? Lack of accurate

modeling of the SDN semantics can significantly

impede the precision of race detection. For exam-

ple, in Figure 1, without reasoning the causality or-

der between line 3 and line 5 for the internal event

dispatching, the state update operation at line 1 and

state reference at line 10 will be reported as a false

positive.

• Second, how to manifest and verify harmful race

conditions? Witnessing/reproducing concurrency

errors is infamously difficult since they may be non-

deterministic that only occur in rare scenarios with

the special input and schedule. For example, the

vulnerability in Figure 1 is triggered when the write

operation on the state variable switches (e.g., trig-

gered by the SWITCH_JOIN event) occurs before the

read operation of the state variable (e.g., caused by

the SWITCH_JOIN event). In addition, the runtime

context of the two state operations must be consis-

tent, e.g., the value of dpid at lines 4 and 10 must be

equal.

To address the first challenge, we develop an execution

model of the SDN control plane that formulates happens-

before semantics in the SDN domain, which can help

us greatly reduce false positives. For the second chal-

lenge, we develop an adversarial testing approach with

a context-aware and deterministic scheduling technique,

called Active Scheduling, to verify and manifest harmful

race conditions.

4.1.1 Modeling the SDN Control Plane

Generally, an execution of an SDN controller corre-

sponds to a sequence of operations performed by threads

on a collection of state objects. For detecting races, we

would like to develop a model such that it captures all the

critical operations inside the SDN control plane (as an

execution trace) and their causality relationships in any

execution of the SDN controller (as happens-before re-

lations). Different from general multi-thread programs,

there are a number of distinct types of operations and

domain-specific causality rules in the SDN control plane.

Execution Trace: First, we model an execution of the

SDN control plane as a sequence of operations as listed

following:

• read(T,V): reads variable V in thread T.

• write(T,V): writes variable V in thread T.

• init(A): initializes the functions of application A in

the SDN control plane.

• terminate(A): terminates the functions of applica-

tion A in the SDN control plane.

• dispatch(E): issues event E.

• receive(H,E): receives event E by event handler H.

• schedule(TA): instantiates a singleton task TA.

• end(TA): terminates a singleton task TA.

Happens-Before Causality: In this paper, we utilize

happens-before relations [28] to model the concurrency

semantics of the SDN controller. A happens-before re-

lation is a transitively closed binary relation to represent

order causality between two operations, as denoted by

≺ in this paper. That is, α ≺ β means operation α hap-

pens before operation β . Moreover, we utilize α <τ β
to denote that operation α occurs before operation β
in an execution trace τ . As illustrated in Figure 6, we

list happens-before relations we derive in the SDN con-

text by studying implementations of SDN controllers and

OpenFlow switch specification [5]. For simplicity, we do

not list those happens-before rules widely used in tradi-

tional thread-based programs, e.g., program order rules

and fork/join rules. Instead, we elaborate some happens-

before rules mostly unique to the SDN control plane as

listed in Figure 6, which we intend to expand over time.

Application Life Cycle. We define two happens-

before rules to model the life cycle of an SDN applica-

tion. First, an application must be initialized before it

can handle any network event; second, all event handling

operations in an application must happen before the de-

activation of the application.

Event Dispatching. For each network event (as

shown in Table 1), we consider dispatching of the event

must happen before the receipt of the event in various

event handlers.

Sequential Event Handling. Moreover, most SDN

controllers (e.g., OpenDaylight, ONOS, Floodlight, Pox,

Ryu, etc.) handle network events sequentially, i.e., at

any time an event can only be processed in a single event

handler. Hence, we deduce that the receipt of a specific

event for different handler functions should follow their

orders in the observed execution trace.

Switch Event Dispatching. Before issuing

SWITCH_JOIN event, the SDN control plane must

Application Life Cycle

α ∈ init(A) β .app id = A.app id

α ≺ β
α.app id = A.app id β ∈ terminate(A)

α ≺ β
Event Dispatching

α ∈ dispatch(E) β ∈ receive(H,E)

α ≺ β
Sequential Event Handling

α = receive(H1,E) β = receive(H2,E) α <τ β

α ≺ β
Switch Event Dispatching

α = receive(H,E1) β = dispatch(E2)
E1.type = OFP_FEATURES_REPLY E2.type = SWITCH_JOIN

E1.switch id = E2.switch id

α ≺ β
Port Event Dispatching

α = (H,E1) β = dispatch(E2)
E1.type = OFP_PORT_STATUS E2.type = PORT_UP
E1.port id = E2.port id E1.reason = OFPPR_ADD

α ≺ β
α = (H,E1) β = dispatch(E2)

E1.type = OFP_PORT_STATUS E2.type = PORT_DOWN
E1.port id = E2.port id E1.reason = OFPPR_DELETE

α ≺ β
Explicit Link Down and Host Leave

α = (H,E1) β = dispatch(E2) E1.port id = E2.port id

E1.type = PORT_DOWN E1.type = {LINK_DOWN,HOST_LEAVE}
E1.port id = E2.port id

α ≺ β
α = (H,E1) β = dispatch(E2) E1.switch id = E2.switch id

E1.type = SWITCH_LEAVE E1.type = {LINK_DOWN,HOST_LEAVE}

α ≺ β
Singleton Task

α = end(TA) β = schedule(TA) α <τ β

α ≺ β

Figure 6: Happens-before rules in the SDN control

plane.

receive an OFP_FEATURES_REPLY event that includes

important information of the joining switch, e.g.,

Datapath ID.

Port Event Dispatching. The SDN control plane

monitors OFP_PORT_STATUS OpenFlow messages to de-

tect the addition and deletion of switch ports in the data

plane. Consequently, the corresponding PortManager

application dispatches PORT_UP or PORT_DOWN events to

inform other applications.

Implicit Host Leave or Link Down. In the SDN con-

trol plane, we also monitor implicit causalities between

events, i.e., a PORT_DOWN or SWITCH_LEAVE event may

implicitly indicate a HOST_LEAVE or LINK_DOWN event.

Singleton Task. We note that a specific singleton task

can only be instantiated once at a time. In order to avoid

non-determinism of thread scheduling (especially in a

thread pool), we define one happens-before relation to

model the causality order that the last completion of a

specific singleton task happens before the next schedule

of the task.

4.1.2 Detecting Race State Operations

Our algorithm for detecting race state operations upon

shared network state variables is based on the happens-

before rules constructed in the previous section. Given an

observed execution trace τ of an SDN controller, we con-

struct happens-before relations ≺ between each pair of

operations listed in the execution model in Section 4.1.1.

For each pair of memory access operations, i.e., (α,β),
on the same state variable, we report (α,β) as a race

state operation, if it meets two conditions: 1) either α or

β updates the state variable; 2) α 6≺ β and β 6≺ α .

Taking the raw execution trace as input, we first con-

duct an effective preprocessing step to filter out redun-

dant operations in the trace. Specifically, we remove

those operations on thread-local or immutable data, since

we only need to reason about conflicting operations on

shared state variables. We also perform a duplication

checking to prune duplicated write and read operations.

In SDN, an event handler can repeatedly process iden-

tical network events, which produces a large number of

duplicated events in the trace. Removing such redundant

events significantly improves the efficiency of race con-

dition detection.

We note that standard vector-clock based tech-

niques [19] for computing happens-before relation is dif-

ficult to scale to the SDN domain, which typically con-

tains a large number of network events and threads. In-

stead, we develop a graph-based algorithm [24, 31] that

constructs a directed acyclic graph (DAG) from the pre-

processed trace to detect commutative races. In the DAG,

nodes denote operations, and edges denote happens-

before relations between them. The rationale is that the

problem of checking happens-before can be converted to

a graph reachability problem. To facilitate race detection,

we group operations by their accessed state variable. We

can then pinpoint race operations by checking if there

is a path between each pair of conflicting nodes in the

DAG. Specifically, if a write node and a read node are

from the same group, and there is no path between them,

we report they are race operations.

4.1.3 Adversarial State Racing

Verifying a potentially harmful race condition is a chal-

lenging problem because it can only be triggered in a

specific execution branch of the SDN controller under a

certain schedule of operations. An intuitive approach is

to instrument control logic to force an erroneous execu-

tion order, e.g., the state update executes before the state

reference. However, we find such strawman approach

introduces non-determinism due to two reasons. First,

SDN applications may reference the same network state

variable in different program branches. Second, incon-

sistent input parameters of the library methods upon a

state variable may impede the verification, e.g., schedul-

ing switches.remove(sw1) before switches.get(sw2) will

not lead to a harmful race condition. To address the

first problem, we propose to explore all possible program

branches to the reference operation upon the state vari-

able and verify all of them at runtime deterministically.

To address the second problem, we check the consistency

of parameters for library methods upon the same state

variable.

Thread a Thread b

Operation 1

(State Reference)

Operation 2

(State Update)

P1 P2

P4P3

pause

WP 1 WP 2 WP N

Branch 1 Branch 2 Branch N

……
SDN

Controller

Figure 7: Active Scheduling to force a state update to

execute before a state reference (WP denotes waypoint).

Active Scheduling. Taking a potentially harmful race

condition as input, our active scheduling technique re-

executes the program to force two operations (like oper-

ations in line 4 and line 10 in Figure 1) to follow a spe-

cific erroneous order, as shown in Figure 7. To force the

deterministic schedule in a certain control branch (and

external triggers), we put an exclusive waypoint (a check

point in the code) to differentiate it with other branches.

In addition to utilizing the waypoint to ensure execution

context, we also add four atomic control points (P1, P2,

P3, and P4) and one flag (F1) to enforce the deterministic

scheduling between the state reference operation and the

state update operation with consistent runtime informa-

tion.

More specifically, we place P1 ahead of Operation 1,

P2 ahead of Operation 2, P3 after Operation 1 and P4

after Operation 2. The active scheduling works as fol-

lows: In P1, if the corresponding waypoint is marked

(which means the branch under test is covered), we

pause Thread a by using a blocking method and save the

runtime parameter value if necessary (e.g., the dpid of

switches.getSwitch(dpid) in Figure 1). When Thread b

enters P2, we set flag F1 if two conditions are satisfied:

(1) Thread a is blocked; (2) the runtime value for Oper-

ation 2 is equal to runtime value of Operation 1. In P4,

we unblock Thread a if flag F1 is set.

4.2 Remotely Triggering Harmful Race

Conditions

To launch the attack, an adversary, who has no control

of the SDN controller except sending external network

events, first needs to figure out what external events to

trigger a harmful race condition. For example, in Fig-

ure 1, a SWITCH_JOIN event can trigger a reference on

the switch state and SWITCH_LEAVE event can trigger an

update on the switch state. In addition, the attacker needs

to trigger a “bad” schedule that can expose the harmful

race condition. For example, a schedule in which the up-

date on the switch state happens before the dereference.

4.2.1 Trigger Correlation

Since SDN controllers define different handler functions

to process various network events, we first statically an-

alyze the program to extract a map from external events

to their corresponding handler functions. Then, for each

operation in a potentially harmful race condition, we

backtrack the control flow graph from the operation to

correlate the operation with the external event. In par-

ticular, we consider that a trigger event is correlated to

a state reference operation and an update event is cor-

related to a state update operation. Moreover, we re-

solve potential contextual relations between trigger event

and state update event by inspecting input parameters

of state operations. For example, to exploit the vul-

nerability in Figure 1, the dpid of the update event

SWITCH_LEAVE should be consistent with that of the trig-

ger event SWITCH_JOIN.

4.2.2 Exploitation

In general, hitting a specific schedule that manifests

harmful races is difficult because the space of all pos-

sible schedules is huge. Nevertheless, in SDN networks,

an attacker can explore several effective ways to increase

the chance of hitting an erroneous schedule.

First, we come up with a basic attack strategy, i.e., an

attacker can repeat a proper sequence of crafted events

(including ordered <trigger event, update event>). The

trigger events will push the SDN controller to reference

the state while the update events will modify the state.

Hence, there are two resulting scenarios: 1) if the update

event can update the network state before the reference

happens, the exploitation succeeds; 2) if the update event

falls behind the reference operation, a harmful race con-

dition will not be triggered. In addition to injecting or-

dered attack event sequences, an attacker can probe the

signals from SDN controllers to infer the attack results

which can also benefit next-round exploitations. For ex-

ample, in Figure 1, if the update event is late, we can

observe the SDN controller send out LLDP packets to all

enabled ports of the activated switch. The attacker can

hence tune the timing interval between trigger event and

update event to enhance the exploitability. Several other

kinds of feedback information such as responses from

service IP address and DHCP response/offer messages

can also be utilized by the attacker to increase the suc-

cess rate of the exploitations. We present more examples

later in Table 5.

Moreover, an attacker can tactically increase the prob-

ability of success by selecting a larger vulnerable win-

dow [51] for a specific exploitation. The vulnerable win-

dow is the timing window that a concurrency vulnerabil-

ity may occur. For some vulnerabilities, we found that

their vulnerable windows are subject to network con-

ditions, e.g., the size of network topology or network

round-trip latency. For example, as the harmful race

condition in Figure 5, the attacker can launch the attack

when the network delay is high. In such a case, an at-

tacker can first utilize a probe testing to pick up an ad-

vantageous condition to launch the attack.

5 Implementation

We have implemented CONGUARD and tested it on three

mainstream SDN controllers, including Floodlight [1],

ONOS [3] and OpenDaylight [4].

Input Generation: To inject network events, we intro-

duce an SDN control plane specific input generator in

our framework. We utilize Mininet 2.2 [7], an SDN net-

work simulator, to mock an SDN testbed. Mininet can

generate all the network events as shown in Table 1. In

addition, we create test scripts to send REST requests as

another source of inputs to the SDN controller.

Instrumentation: We use the ASM [9] bytecode rewrit-

ing framework to instrument and analyze SDN con-

trollers at the Java bytecode level. For each event in

the execution trace, we assign a global incremental num-

ber as its identifier, a location ID to store its source

code context (i.e., class name and line number), and a

thread ID. At runtime, the execution traces and contex-

tual metadata are stored in a database (H2 [2]). Since

we focus on locating harmful race conditions in the SDN

controller source code, we exclude external packages in

third-party libraries from the instrumentation. In addi-

tion, to improve performance, we only instrument those

network state variables with reference data types and ex-

clude primitive types (e.g., int, bool) because typically

only reference types are involved in harmful race condi-

tions.

We log memory accesses (e.g., putfield and getfield)

upon objects and class fields as well as their values as

metadata. We note that the SDN control plane em-

braces heterogeneous storages for network state includ-

ing third party libraries such as java.util.HashMap. Fail-

ing to resolve those storage methods (e.g., remove() and

get()) would lead to missing of potential vulnerabilities.

Hence, we map those library method invocation oper-

ations as write or read operations upon the state ob-

ject. For example, we consider switches.remove(dpid) is

a write operation on switches.

We locate two kinds of event dispatching manners in

SDN controllers, i.e., queue-based and observer-based.

For queue-based rules, we record write and read opera-

tions upon global event queues as dispatch and receive

operations. In contrast, for observer-based scheme, we

log the invocations of event handler functions with the

context of application name as receive operations upon

the event.

We track schedule and end task operations by monitor-

ing the life-cycle of run() method for singleton tasks. We

log application life-cycle operations (i.e., init and termi-

nate) by monitoring application-related callback meth-

ods (as listed in Table 2) with the identifier of the name

of the class.

Table 2: Initialization and destroy methods of SDN

controllers.

Controller Init Methods Destroy Methods

Floodlight init(), startup() –

ONOS activate() deactivate()

OpenDaylight init() destroy()

Active Scheduling: We implement active scheduling as

a service module in the SDN controller that provides

functions such as atomic control points (i.e., P1-P4) and

waypoints. In order to cover all potential branches to

trigger the bug, we statically generate the call graph of

the tested controller. For each race state operations, we

backtrack all paths (i.e., sequences of calling methods)

to reach the state reference operation. For each path, we

choose the method as the waypoint if it is: (1) nearest

to the use operation in the call graph and (2) not listed

in any other path. Taking the location of race state op-

erations and all its corresponding waypoints as input, we

instrument the SDN controller to invoke methods of the

active scheduling service module.

6 Evaluation

In this section, we present our evaluation results of

CONGUARD on the three mainstream open-source SDN

controllers with 34 applications as listed in Table 7 in

Appendix A. We hosted all the tested SDN controllers on

a machine running GNU/Linux Ubuntu 14.04 LTS with

dual-core 3.00 GHz CPU and 8 GB memory.

Table 3: Overall race detection results. (#RT: the size of raw traces before preprocessing; #OT: the size of optimized

traces; RE: reduction ratio by preprocessing; OTATime: the total time for offline trace analysis; #Races: the number

of detected race conditions; #RSVs: the number of Race State Variables)

1 2 3 4 5 6 7 8

SDN Controller Trace Processing Race Detection Results

Name Version #RT #OT RE OTATime #Races #RSVs

Floodlight 1.1 234,517 8,063 96.6% 43s 153 22

1.2 410,128 52,271 87.2% 101s 184 35

OpenDaylight 0.1.7 47,855 3,752 92.1% 5s 221 26

ONOS 1.2 69,214 1,292 98.1% 5s 13 5

6.1 Detection Results

Table 3 summarizes our race detection results in Flood-

light 1.1 and 1.2, ONOS 1.2 and OpenDaylight 0.1.7. In

total, our tool found 153 race conditions on 22 network

state variables in Floodlight 1.1, 184 race conditions on

35 variables in Floodlight 1.2, 221 race conditions on 26

variables in OpenDaylight, and 13 race conditions on 5

variables in ONOS. The numbers of detected race op-

erations and network state variables in ONOS are much

smaller than those of the other two controllers, because

ONOS uses a centralized data storage to manage the net-

work states. In addition, our results show that our offline

trace analysis is highly effective and efficient. The pre-

processing step reduces the size of traces (by removing

redundant events) by more than 87%. For all the three

controllers, the offline analysis was able to finish in less

than two minutes.

To evaluate the effectiveness of the SDN domain-

specific happens-before rules, we compared the fol-

lowing two configurations on running race detection

of CONGUARD with Floodlight version 1.1: (1) en-

forces only thread-based happens-before rules; (2) en-

forces both thread-based and SDN-specific rules. Our

results show that adopting SDN-specific happens-before

rules reduces 105 reported race conditions in total (153

vs 258). We manually inspected all those race condi-

tion warnings filtered by SDN-specific rules and found

that all of them are false positives. We expect that

the happens-before rules formulated in this work greatly

complement existing thread-based rules for conducting

more precise concurrency defect detection in SDN con-

trollers.

6.2 Comparing With Existing Techniques

To evaluate the effectiveness of our approach for iden-

tifying harmful race conditions, we also compared

CONGUARD with an SDN-specific race detector, SD-

NRacer [18], and a state-of-the-art general dynamic race

detector, RV-Predict (version 1.7) [22].

Comparing with SDNRacer. SDNRacer is a dy-

namic race detector that also locates concurrency vio-

lations in SDN networks. Because SDNRacer can also

work on the Floodlight controller, we directly compared

their results with ours. In a single-switch topology,

SDNRacer reported 2, 281 data races. However, we

find that none of those data races are relevant to our

detected harmful race conditions. The reason lies in

that SDNRacer only models memory operations in SDN

switches but ignores internal state operations in SDN

controllers. In this sense, we consider our new detection

solution is orthogonal and complementary to SDNRacer.

Comparing with RV-Predict. RV-Predict is the

state-of-the-art general-purpose data race detector that

achieves maximal detection capability based on a pro-

gram trace but does not consider harmful race conditions,

and does not have SDN-specific causality rules. We eval-

uated RV-Predict as a Java agent for Floodlight v1.1 with

our implemented network event generator and REST test

scripts. We found that RV-Predict reported a total of 29

data races. However, none of them was harmful and none

of them was related to harmful race conditions4. The rea-

son is that all those harmful race conditions are caused

by well-synchronized operations in Java concurrent li-

braries, which are not data races.

6.3 CONGUARD Runtime Performance

We evaluated the runtime performance of CONGUARD

for trace collection using Cbench [8], an SDN controller

performance benchmark. We use Cbench to generate

a sequence of OFP_PACKET_IN events and test the de-

lay. To remove network latency, we locate Cbench in

the same physical machine with SDN controllers and

range testbed from 2 switches to 16 switches. Our results

show that CONGUARD incurs about 30X, 10X and 8X

latency overhead for Floodlight, ONOS and OpenDay-

light, respectively. The network functionalities can work

properly and the instrumentation does not affect the col-

lection of execution traces. The performance overhead

mainly comes from instrumentation sites that frequently

write event traces into the database. Although apparently

4 We manually backtracked the call graph information for every data

race reported by RV-Predict and checked if it could lead to harmful race

conditions.

8X-30X latency is not small, we note that our tool is for

offline bug/vulnerability finding purpose in the develop-

ment and testing phase instead of online use in the actual

operation phase. Thus, the overhead is acceptable as long

as the tool can effectively find true bugs/vulnerabilities.

10:30:58.430 ERROR [n.f.c.i.Controller:main] Exception in controller updates loop

java.lang.NullPointerException: null

at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.generateLLDPMessage(L

at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.sendDiscoveryMessage(

at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.discover(LinkDiscoveryM

at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.processNewPort(LinkDis

at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.switchActivated(LinkDisc

at net.floodlightcontroller.core.internal.OFSwitchManager$SwitchUpdate.dispatch(OFSwitchMa

Figure 8: A harmful race condition causes the

Floodlight controller out of service.

22:33:28.298 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #12]

Error while processing message from switch [00:00:00:00:00:00:00:01 from 192.168.1.102:5281

state net.floodlightcontroller.core.internal.OFChannelHandler$CompleteState@32250656

java.lang.NullPointerException: null

at net.floodlightcontroller.loadbalancer.LoadBalancer.processPacketIn(LoadBalancer.java:234) ~

…

at java.lang.Thread.run(Thread.java:745) [na:1.7.0_79]22:33:28.299

WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.

Figure 9: A harmful race condition in Floodlight causes

disconnection of a switch.

Error while processing message from switch org.onosproject.driver.handshaker.DefaultSwitchHandshaker

[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]state ACTIVE

java.lang.NullPointerException

….

at org.onosproject.segmentrouting.ArpHandler.processPacketIn(ArpHandler.java:84)

….

Switch disconnected callback for sw:org.onosproject.driver.handshaker.DefaultSwitchHandshaker

[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]. Cleaning up ...

org.onosproject.driver.handshaker.DefaultSwitchHandshaker [/192.168.1.102:42140

DPID[00:00:00:00:00:00:00:01]]: removal called

Device of:0000000000000001 disconnected from this node

Figure 10: A harmful race condition in ONOS causes

disconnection of a switch.

6.4 Impact Analysis of the Detected Vul-

nerabilities

By utilizing adversarial testing, we identified 15 concur-

rency bugs/vulnerabilities caused by harmful race condi-

tions including 10, 2, 3 in Floodlight, ONOS and Open-

Daylight, respectively. Furthermore, we conduct an im-

pact analysis for those vulnerabilities, as shown in Ta-

ble 4. We note that a single harmful race condition can

have multiple impacts depending on different program

branches/schedules and contexts.

Impact #1: System Crash. In Floodlight, we found 4

serious crash bugs, in which three of them (Bug-1, Bug-

2 and Bug-3) are in the LinkDiscoveryManager applica-

tion and one of them (Bug-4) is in DHCPSwitchServer

application. We manifested such vulnerabilities by ac-

tive scheduling (as shown in Figure 8) and found that the

main thread of Floodlight controller was unexpectedly

terminated.

Impact #2: Switch Connection Disruption. We

found 7 bugs (Bug-5, Bug-6, Bug-7, Bug-8, Bug-9,

Bug-11 and Bug-12) that could cause the SDN controller

to actively close the connection to an online switch. Fig-

ure 9 and Figure 10 show stack traces reproducing this

issue in Floodlight and ONOS controllers. The connec-

tion disruption is a serious issue in SDN domain since:

(1) by default, the victim switch may downgrade to tradi-

tional Non-OpenFlow enabled switch and then traffic can

go through it without controller’s inspection; (2) an SDN

controller may send instructions to clear the flow table of

the victim switch when the controller recognizes a con-

nection attempt from the switch5. As a result, security-

related rules may also be purged.

Impact #3: Service Disruption. We also found sev-

eral bugs that could interrupt the enforcement of services

inside the SDN control plane, which may lead to serious

logic bugs that hazard the whole SDN network.

In Floodlight, we found 3 bugs (Bug-1, Bug-2, and

Bug-3) in the LinkDiscoveryManager application that

can violate the operation of link discovery procedure.

Moreover, we found 1 bug (Bug-10) in the Statistics

application that disrupts the processing of REST re-

quests. In addition, we located 5 such bugs in the

OFP_PACKET_IN handler of LoadBalancer application.

Bug-5 and Bug-6 could cause a logic flaw that leaks

the physical IP address of the public server’s replica.

Bug-7, Bug-8 and Bug-9 could disrupt the handling of

OFP_PACKET_IN events.

In ONOS, we found two such bugs (Bug-11 and Bug-

12). The bug Bug-11 is in the SegmentRouting ap-

plication that can disable the proxy ARP service and

lead to the temporary block of end-to-end communica-

tion on a specific host. Similarly, the bug Bug-12 is in

the DHCPRelay application that will disable the DHCP

relay service to send out DHCP reply to its clients.

In OpenDaylight, we found two such bugs. One (Bug-

13) is in the HostTracker application, which could deny

the REST API requests for creating a static host for a

known host. The other (Bug-15) could affect the func-

tionality of a Web UI application.

Impact #4: Service Chain Interference. We found

several bugs that could violate the network visibility

among various applications and could block applica-

tions from receiving their subscribed network events. In

Floodlight, we found 5 such bugs (Bug-5, Bug-6, Bug-7,

Bug-8 and Bug-9) in the LoadBalancer application that

5This is an optional feature specified in OpenFlow protocol to pre-

vent residual flow rule problem. However, we find that this feature

could be enabled in most of SDN controllers.

Table 4: Summary of harmful race conditions uncovered by CONGUARD. Impact #1: System Crash; Impact #2:

Connection Disruption; Impact #3: Service Disruption; Impact #4: Service Chain Interference.

Controller Application Bug# Correlated Attack Event Pairs Impact Vector

<trigger event, update event> #1 #2 #3 #4

Link 1∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>

Discovery 2∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>

Manager 3∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>

Flood- DHCPServer 4∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>

light 5∗ <OFP_PACKET_IN, SWITCH_LEAVE>

6∗ <OFP_PACKET_IN, SWITCH_LEAVE>

Load 7†
<OFP_PACKET_IN, REST_REQUEST>

Balancer 8†
<OFP_PACKET_IN, REST_REQUEST>

9†
<OFP_PACKET_IN, REST_REQUEST>

Statistics 10†
<REST_REQUEST, SWITCH_LEAVE>

ONOS SegmentRouting 11 <OFP_PACKET_IN, HOST_LEAVE>

DHCPRelay 12 <OFP_PACKET_IN, HOST_LEAVE>

OpenDay- Host 13†
<REST_REQUEST, HOST_LEAVE>

light Tracker 14 <HOST_JOIN, HOST_LEAVE>

Web UI 15†∗
<REST_REQUEST, SWITCH_LEAVE>

∗ exploitable if the network is configured with in-band control, or if the adversary has access to the out-of-band network

† exploitable if the adversary can send authenticated administrative events (REST APIs) to the controller

could break the service chain for OFP_PACKET_IN event

handlers. Similarly, we found 1 bug (Bug-14) in Open-

Daylight, i.e., a concurrent HOST_LEAVE event can break

the host event handling chain.

6.5 Remote Exploitation Analysis

We consider all of the detected harmful race conditions

can be triggered non-deterministically in normal oper-

ations of an SDN/OpenFlow network. In addition, we

study the adversarial exploitations of those harmful race

conditions by a remote attacker as discussed in Sec-

tion 3.1. We first investigate their external triggers, i.e.,

the trigger event and update event pair, as shown in

Table 4. For 15 harmful race conditions we detected,

we found 9 of them can be exploited by external net-

work events. An attacker with the control of compro-

mised hosts/virtual machines in SDN networks can eas-

ily trigger three harmful race conditions (i.e., Bug-11,

Bug-12 and Bug-14) by generating OFP_PACKET_IN,

HOST_JOIN, HOST_LEAVE, PORT_UP, and PORT_DOWN.

Moreover, the attacker can remotely exploit 6 more

harmful race conditions (i.e., Bug-1, Bug-2, Bug-3,

Bug-4, Bug-5 and Bug-6) by utilizing SWITCH_JOIN

and SWITCH_LEAVE events when the SDN network uti-

lizes in-band control messages. For the rest 6 harm-

ful race conditions (i.e., Bug-7, Bug-8, Bug-9, Bug-10,

Bug-13, and Bug-15), we found that they correlate with

REST API requests which are administrative events and

might be protected by TLS/SSL. We consider the ex-

ploitation of those 6 harmful race conditions is out of

scope of the paper since we do not assume an attacker

can generate authenticated administrative events in the

paper. Also, we found that there might have multiple

triggers for a specific harmful race condition since SDN

applications may reference the same network state vari-

able in order to react upon various network events.

Moreover, based on results from Table 4, we evaluate

the feasibility of an external attacker to exploit harmful

race conditions. In particular, we utilize Mininet to inject

ordered attack event sequences with a proper timing and

test how many trials an external attacker needs to trig-

ger a harmful race condition. Table 6 shows the average

number of injected event sequences from 5 successful ex-

ploitations for an attacker to exploit a harmful race con-

dition in an SDN controller6. Consequently, we found

an attacker can exploit 7 out of 9 harmful race conditions

within only hundreds of attempts.

Furthermore, Table 5 lists some feedback information

that an attacker can use to infer the result of exploita-

tions. For Bug-1, Bug-2, Bug-3, and Bug-4, the attacker

can infer the failure of exploitation by monitoring LLDP

packets from the SDN controller to the active ports of

the activated switch. For Bug-5 and Bug-6, the attacker

can notice the unsuccessful exploitations by receiving re-

6Note that since some attack event sequence may trigger multiple

harmful race condition (e.g., <SWITCH_LEAVE, SWITCH_JOIN> can

trigger Bug-1, Bug-2, Bug-3, and Bug-4), we only record the first bug

exploitation because an exploitation of harmful race condition may dis-

rupt the operation of the SDN controller.

sponses from the virtual IP address of the public service.

For Bug-12, as long as the attacker receives a DHCP re-

sponse/offer message, he/she can infer that the exploita-

tion fails. More importantly, the indicative information

is useful for the attacker to tune their exploitations such

as to minimize the timing interval between trigger event

and update event.

In addition to injecting ordered attack events and tun-

ing the timing between attack events, we also found that,

the vulnerable windows of 7 harmful race conditions

(i.e., Bug-1, Bug-2, Bug-3, Bug-4, Bug-5, Bug-6, and

Bug-12) can be enlarged in some conditions. In par-

ticular, the vulnerable windows of Bug-1 and Bug-4 in-

clude the dispatch of all previous updates of Floodlight

controller as shown in Figure 1, where the more unpro-

cessed network events (e.g., SWITCH_JOIN, PORT_UP,

and PORT_DOWN) and the more event handler functions

of SDN applications can enlarge the window. The vul-

nerable windows of Bug-2 and Bug-3 are linearly corre-

lated with the numbers of active ports of the switch. The

vulnerable windows of Bug-5 and Bug-6 are relevant to

the number of switches in the route between the com-

promised host and the target server in Figure 4. Lastly,

as discussed in Section 3.3.2, the vulnerable window of

Bug-12 is subject to round-trip delay between ONOS

controller and the DHCP server. An attacker could uti-

lize them to increase the success rate of exploitation.

Table 5: Feedback information for the exploitations of

harmful race conditions.

Bug # Indications of Failed Exploitation

1,2,3,4 receipt of LLDP packets

5,6 receipt of responses from the service IP address

12 receipt of DHCP response/offer messages

Table 6: Remote exploitation result.

Bug # Attack Case Trials (average)

1 (SWITCH_JOIN,SWITCH_LEAVE) 10.6

2 (SWITCH_JOIN,SWITCH_LEAVE) 78.4

3 (SWITCH_JOIN,SWITCH_LEAVE) 120

4 (SWITCH_JOIN,SWITCH_LEAVE) 10

5 (OFP_PACKET_IN,SWITCH_LEAVE) 67.6

6 (OFP_PACKET_IN,SWITCH_LEAVE) 106.8

11 (OFP_PACKET_IN,HOST_LEAVE) -

12 (OPP_PACKET_IN,HOST_LEAVE) 1

14 (HOST_LEAVE,HOST_JOIN) -

6.6 Case Studies

Here we detail two state manipulation attack examples as

briefly introduced in Section 3.3.

Sniffing Physical IP Address of Service Replica.

In order to exploit the harmful race condition remotely,

we set up an experiment as shown in Figure 4 in

Mininet [7]. To launch the attack, we periodically in-

jected OFP_PACKET_IN and SWITCH_LEAVE events. In

particular, we updated the source IP address of a host and

sent out ICMP echo requests (with the destination IP ad-

dress of the public service 10.10.10.10) into the network

to trigger the OFP_PACKET_IN messages. We also re-

set the TCP session between switch 2 and the Floodlight

controller to generate SWITCH_LEAVE. As long as ob-

serving an ICMP echo reply whose source IP address is

the physical replica (10.0.0.4), we consider the exploita-

tion succeeds. Consequently, we successfully sniffed the

physical IP address of the service replica after injecting

tens of SWITCH_LEAVE events, as shown in Figure 11 be-

low.

Figure 11: Privacy leakage in Floodlight LoadBalancer.

Disrupting Packet Processing Service. We set up

an attack experiment in Mininet (with 500ms delay link

between the DHCP server and its connected switch),

where we injected ordered attack event sequences, i.e.,

<OFP_PACKET_IN, HOST_LEAVE>. In detail, we con-

trolled a host to send out a DHCP request (to generate

OFP_PACKET_IN) and turn off the network interface (to

inject a HOST_LEAVE event) immediately after the trans-

mission of the DHCP request. As a result, the harmful

race condition is triggered by injecting an attack event

sequence, which actually disrupts the packet processing

service (as shown in Figure 12) to dispatch the incoming

packets to OFP_PACKET_IN event handlers of SDN con-

troller/applications. The exploitation possibility of such

harmful race condition is comparatively high for a re-

mote attacker since its vulnerable window is subject to

round-trip delay between the ONOS controller and the

DHCP server. In this case, a tactical attacker can even

pick up a network congestion timing to increase the suc-

cess ratio of the exploitation.

WARN | ew I/O worker #2 | PacketManager | 76 org.onosproject.onos core net 1.7.2.SNAPSHOT | Packet

processor org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor

@6018f73a threw an exceptionjava.lang.NullPointerException

at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.sendReply(DhcpRelay.java:391)

[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]

at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.processDhcpPacket(DhcpRelay.java:333)

[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]

Figure 12: Service disruption in ONOS DHCPRelay.

7 Defense Schemes

In this section, we discuss some possible defense tech-

niques that developers or network administrators can use

to mitigate this type of attacks.

Safety Check. To defend against the attack, one way

is to remove those harmful race conditions once detected.

The root cause of harmful race conditions is the concur-

rency violations inside the SDN controller/applications

that may render inconsistency during state transition. For

example, a concurrent SWITCH_LEAVE event modifying

the state of a switch may incur some logic flaw in the

handler of SWITCH_JOIN event for the switch. In this

paper, we mitigate the exploitation of harmful race con-

ditions by adding extra state checks in the SDN con-

troller/applications to ensure the state is unchanged at

the referenced location. By adding such safety checks,

we have assisted the developers of SDN controllers to

patch 12 harmful race conditions. Our future work will

investigate how to automate this procedure.

Deterministic Execution Runtime. Another defense

solution is to guarantee the deterministic execution of

state operations in the SDN control plane at runtime.

However, such a solution is difficult to correctly imple-

ment due to the undecidable order of two race opera-

tions. Even though we successfully resolve the orders

between race operations, it inevitably undermines the

parallelism of event processing, which further affects the

overall performance of SDN controllers for a large-scale

network environment. Designing a deterministic execu-

tion runtime system to mitigate concurrency errors in the

SDN control plane with minor performance overhead is

a meaningful future research direction.

Sanitizing External Events. One important factor of

successful exploitation of harmful race conditions lies in

that an attacker can intentionally inject various control

plane messages (e.g., HOST_LEAVE, SWITCH_LEAVE) to

modify the internal state inside the SDN control plane.

In this sense, adopting an anomaly detection system to

sanitize suspicious state update events could impede the

exploitation of harmful race conditions. For example,

an anomaly detection system may block some host to

join SDN networks if its connection status is flipping

frequently in a short time. Designing such anomaly de-

tection with low false positives/negatives is worth future

investigation.

8 Limitations and Discussion

Testing Coverage. As a common drawback of dy-

namic analysis techniques [10], the race detection part

of CONGUARD cannot cover all execution paths. Thus,

CONGUARD may not cover all harmful race conditions

due to its dynamic nature. Instead, it focuses on locat-

ing the vulnerabilities more accurately given an execu-

tion trace. Also, our SDN-specific input generator is de-

signed to cover essential and remote-attacker-accessible

SDN events as much as possible to pinpoint concurrency

vulnerabilities in the SDN control plane. To increase the

code coverage, in our future work, we plan to comple-

ment CONGUARD with other coverage-based techniques

such as symbolic execution [47, 42].

Supporting More Controllers and Other Event-

driven Systems. The current implementations of

CONGUARD are targeting Java-based mainstream SDN

controllers such as Floodlight, ONOS and Opendaylight,

which are widely adopted in both academia and indus-

try. In fact, our technical principles and approaches are

generic because the design of CONGUARD is based on

the abstracted semantics of the SDN control plane. In

that sense, we can easily port CONGUARD to other SDN

controllers. We consider this work as a starting point for

the security research on the concurrency issues inside the

SDN control plane. In the future, we plan to extend our

platform to other SDN controllers.

In addition to the SDN control plane and its applica-

tions, we note that harmful race conditions may occur in

other multi-threaded event-driven systems, such as Web

and Android applications. At high level, our approach is

generic to those systems because our basic principle is to

locate harmful race conditions from commutative races.

In order to adapt our approach to other systems, one

needs to feed CONGUARD with precise domain-specific

models (like happens-before rules discussed in Section

4.1.1) and proper design of Active Scheduling.

Misuses of SDN Control Plane Northbound Inter-

faces (NBIs). An application may provide service func-

tions to other applications for referencing its managed

state (e.g., Switch Manager application provides switch

state by the service function getSwitch()). If the state

variable is subject to race state operations, an SDN ap-

plication may misuse service functions (which are also

known as NBIs) to reference network state variables

from other applications. In this work, we have studied

the concurrency violations introduced by specific mis-

uses of those NBIs. However, verification and sanitiza-

tion of more generalized uses of SDN control plane NBIs

are still challenging issues. We plan to study these prob-

lems in future work.

9 Related Work

TOCTTOU vulnerabilities and attacks. One infamous

category of concurrency vulnerabilities is TOCTTOU

(Time of Check to Time of Use) vulnerabilities widely

identified in file systems, which allow attackers to violate

access control checks due to non-atomicity between the

check and the use on the system resources [46, 14, 12]. In

this paper, we study harmful race conditions in SDN net-

works, i.e., harmful race conditions upon shared network

state variables triggered by external network events. In

contrast to TOCTTOU vulnerabilities, a harmful race

condition detected in this paper is a more general type

of concurrency errors which does not necessarily include

a check operation upon race state variables.

Race Detectors. To date, researchers have developed

numerous race detectors for general thread-based pro-

grams [39, 19, 22] and domain-specific programs in web

and Android [21, 31, 36, 33]. However, these existing de-

tectors do not work well for harmful race conditions dis-

cussed in this paper because (1) harmful race condition

vulnerabilities are not necessary data races as discussed

earlier (in many cases they are not), (2) these detectors

lack SDN concurrency semantics.

In the SDN domain, SDNRacer [32, 18] proposes

to detect concurrency violations in the data plane of

SDN networks while treating the SDN control plane as a

blackbox. SDNRacer utilizes happens-before relations to

model SDN data plane and commutative specification to

locate data plane commutative violations. Attendre [45]

extends OpenFlow protocol to mitigate three kinds of

data plane race conditions to facilitate packet forwarding

and model checking. However, SDNRacer and Atten-

dre are exclusively effective in the SDN data plane and

fail to solve concurrency flaws in the SDN control plane,

which has different semantics. In this sense, our work

is complementary to those work in effectively locating

unknown concurrency flaws in the SDN control plane.

Active Testing Techniques. Our active scheduling

technique is inspired by the schools of active testing tech-

niques for software testing [41, 23], which actively con-

trol thread schedules to expose certain concurrency bugs

such as data races and deadlocks. Differently, our tech-

nique is specialized for the SDN controllers.

Verification and Debugging Research in SDN.

Anteater [30] presents a static analysis approach to de-

bug SDN data plane by translating network invariant ver-

ification to the boolean satisfiability problem. NICE [15]

complements model checking with symbolic execution

to locate operation bugs inside SDN controller appli-

cations. Vericon [11] develops a system to verify if

an SDN program is correct to user-specified admissible

network topologies and desired network-wide invariants.

OFRewind [40] proposes to reproduce SDN operation er-

rors by utilizing record-and-replay technique. SOFT [27]

complements symbolic execution with cross checking to

test interoperability of SDN switches. STS [50] lever-

ages delta debugging algorithm to derive minimal causal

sequence for SDN controller operation bugs, which can

facilitate network troubleshooting and root-cause anal-

ysis. Veriflow [26] proposes a shim layer between the

SDN controller and switches to check network invari-

ants. NetPlumber [25] introduces Header Space Analy-

sis to verify network-wide invariant at real-time. None of

the above verification tools are designed to precisely pin-

point concurrency flaws inside SDN control plane, which

is the focus of this work.

Security Research in SDN. Recently, there are many

studies investigating security issues in SDNs. Ropke and

Holz propose that attackers can utilize rootkit techniques

to subvert SDN controllers [38]. DELTA [29] presents a

fuzzing-based penetration testing framework to find un-

known attacks in SDN controllers. TopoGuard [20] pin-

points two new attack vectors against SDN control plane

that can poison network visibility and mislead further

network operation, as well as proposes mitigation ap-

proaches to fortify SDN control plane. In contrast to ex-

isting threats, in this paper we study a new threat to the

SDN, i.e., harmful race conditions in the SDN control

plane.

To fortify SDN networks, AvantGuard [44] and Flood-

Guard [48] propose schemes to defend against unique

Denial-of-Service attacks inside SDN networks. Fort-

NOX [35] and SE-FloodLight [34] propose several se-

curity extensions to prevent malicious applications from

violating security policies enforced in the data plane.

SPHINX [17] presents a novel model representation,

called flow-graph, to detect several network attacks

against SDN networks. Rosemary [43] and [37] propose

sandbox strategies to protect SDN control plane from

malicious applications. Although some of those work

could isolate some impacts introduced by the harmful

race conditions, such as system crash, they are not de-

signed to detect those concurrency flaws as we have il-

lustrated in this paper.

10 Conclusion

In this work, we present a new attack on SDN networks

that leverages harmful race conditions in the SDN con-

trol plane to crash SDN controllers, disrupt core services,

steal privacy information, etc. We develop a dynamic

framework including a set of novel techniques for de-

tecting and exploiting harmful race conditions. Our tool

CONGUARD has found 15 previously unknown vulner-

abilities in three mainstream SDN controllers. We hope

this work will pave a foundation for detecting concur-

rency vulnerabilities in the SDN control plane, and in

general will stimulate more future research to improve

SDN security.

Acknowledgements

We want to thank our shepherd William Enck and the

anonymous reviewers for their valuable comments. This

material is based upon work supported in part by the

the National Science Foundation (NSF) under Grant no.

1617985, 1642129, and 1700544, and a Google Faculty

Research award. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the

views of NSF and Google.

References

[1] Floodlight Repo. https://github.com/floodlight/

floodlight.

[2] Java Graph Library. http://www.h2database.com/html/

main.html.

[3] ONOS Repo. https://github.com/opennetworkinglab/

onos.

[4] OpenDaylight Repo. https://nexus.opendaylight.

org/content/repositories/opendaylight.snapshot/

org/opendaylight/controller/distribution.

opendaylight/.

[5] OpenFlow Specification 1.5. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.

5.0.noipr.pdf.

[6] OpenFlow Specification v1.4.0. http://www.

opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf.

[7] Rapid prototyping for software defined networks. http://

mininet.org/.

[8] Scalable Benchmark for SDN Controllers. http:

//sourceforge.net/projects/cbench/.

[9] ASM. Java Bytecode Analysis Framework. http://asm.ow2.

org/.

[10] BALL, T. The Concept of Dynamic Analysis. In FSE’99 (1999).

[11] BALL, T., BJORNER, N., GEMBER, A., ITZHAKY, S., KARBY-

SHEV, A., SAGIV, M., SCHAPIRA, M., AND VALADARSKY, A.

VeriCon: Towards Verifying Controller Programs in Software-

defined Networks. In PLDI’14 (2014).

[12] BORISOV, N., JOHNSON, R., SASTRY, N., AND WAGNER, D.

Fixing Races for Fun and Profit: How to abuse atime. In Usenix

Security’05 (2005).

[13] BRAUN, W., AND MENTH, M. Software-Defined Networking

Using OpenFlow: Protocols, Applications and Architectural De-

sign Choices. In Future Internet (2014).

[14] CAI, X., GUI, Y., AND JOHNSON, R. Exploiting Unix File-

System Races via Algorithmic Complexity Attacks. In S&P’09

(2009).

[15] CANINI, M., VENZANO, D., PERESINI, P., KOSTIC, D., AND

REXFORD, J. A NICE Way to Test OpenFlow Applications. In

NSDI’12 (2012).

[16] CASADO, M., FOSTER, N., AND GUHA, A. Abstractions for

software-defined networks. Commun. ACM 57, 10 (Sept. 2014),

86–95.

[17] DHAWAN, M., PODDAR, R., MAHAJAN, K., AND MANN,

V. SPHINX: Detecting security attacks in software-defined net-

works. In NDSS’15 (2015).

[18] EI-HASSANY, A., MISEREZ, J., BIELIK, P., VANBEVER, L.,

AND VECHEV, M. SDNRacer: Concurrency Analysis for

Softeware-Defined Networks. In PLDI’16 (2016).

[19] FLANAGAN, C., AND FREUND, S. FastTrack: Efficient and Pre-

cise Dyanmic Race Detection. In PLDI’09 (2009).

[20] HONG, S., XU, L., WANG, H., AND GU, G. Poisoning Net-

work Visibility in Software-Defined Networks: New Attacks and

Countermeasures. In NDSS’15 (2015).

[21] HSIAO, C., YU, J., NARAYANASAMY, S., AND KONG, Z. Race

Detection for Event-Driven Mobile Applications. In PLDI’14

(2014).

[22] HUANG, J., MEREDITH, P., AND ROSU, G. Maximal Sound

Predictive Race Detection with Control Flow Abstract. In

PLDI’14 (2014).

[23] JOSHI, P., PARK, C.-S., SEN, K., AND NAIK, M. A randomized

dynamic program analysis technique for detecting real deadlocks.

In PLDI’09 (2009).

[24] KAHLON, V., AND WANG, C. Universal Causality Graphs: A

Precise Happens-Before Model for Detecting Bugs in Concurrent

Programs. In CAV’10 (2010).

[25] KAZEMIAN, P., CHANG, M., ZENG, H., WHYTE, S., VARGH-

ESE, G., AND MCKEOWN, N. Real Time Network Policy

Checking using Header Space Analysis. In NSDI’13 (2013).

[26] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GOD-

FREY, P. B. VeriFlow: Verifying Network-Wide Invariants in

Real Time. In NSDI’10 (2013).

[27] KUZNIAR, M., PERESINI, P., CANINI, M., VENZANO, D., AND

KOSTIC, D. A SOFT Way for OpenFlow Switch Interoperability

Testing. In CoNEXT’12 (2012).

[28] LAMPORT, L. Time, Clocks, and the Ordering of Events in a

Distributed System . In Communications of the ACM (1978).

[29] LEE, S., YOON, C., LEE, C., SHIN, S., YEGNESWARAN, V.,

AND PORRAS, P. DELTA: A Security Assessment Framework

for Software-Defined Networks. In NDSS’17 (2017).

[30] MAI, H., KHURISHID, A., AGARWAL, R., CAESAR, M., GOD-

FREY, P., AND KING, S. Debugging the Data Plane with

Anteater. In SIGCOMM’11 (2011).

[31] MAIYA, P., KANADE, A., AND MAJUMDAR, R. Race Detection

for Android Applications. In PLDI’14 (2014).

[32] MISEREZ, J., BIELIK, P., EL-HASSANY, A., VANBEVER, L.,

AND VECHEV, M. SDNRacer: Detecting concurrency violations

in software-defined networks. In SOSR’15 (2015).

[33] PETROV, B., VECHEV, M., SRIDHARAN, M., AND DOLBY, J.

Race Detection for Web Applications. In PLDI’12 (2012).

[34] PORRAS, P., CHEUNG, S., FONG, M., SKINNER, K., AND

YEGNESWARAN, V. Securing the Software-Defined Network

Control Layer. In NDSS’15 (2015).

[35] PORRAS, P., SHIN, S., YEGNESWARAN, V., FONG, M.,

TYSON, M., AND GU, G. A Security Enforcement Kernel for

OpenFlow Networks. In HotSDN’12 (August 2012).

[36] RAYCHEV, V., VECHEV, M., AND SRIDHARAN, M. Effec-

tive Race Detection for Event-Driven Programs. In OOPSLA’13

(2013).

[37] ROPKE, C., AND HOLZ, T. Retaining Control Over SDN Net-

work Services. In NetSys’15 (2015).

[38] RPKE, C., AND HOLZ, T. SDN Rootkits: Subverting Network

Operating Systems of Software-Defined Networks. In RAID’15

(2015).

[39] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,

AND ANDERSON, T. Eraser: A dynamic data race detector for

multi-threaded programs. TOCS (1997).

[40] SCOTT, C., WUNDSAM, A., RAGHAVAN, B., PANDA, A.,

A. OR, J. L., HUANG, E., LIU, Z., EI-HASSANY, A., WHIT-

LOCK, S., ACHARYA, H., ZARIFIS, K., AND SHENKER, S.

OFRewind: Enabling Record and Replay Troubleshooting for

Networks. In ATC’11 (2011).

[41] SEN, K. Race directed random testing of concurrent programs.

In PLDI’08 (2008).

[42] SEN, K., AND AGHA, G. Cute and jcute: Concolic unit testing

and explicit path model-checking tools. In CAV’06 (2006).

[43] SHIN, S., SONG, Y., LEE, T., LEE, S., CHUNG, J., PORRAS,

P., YEGNESWARAN, V., NOH, J., AND KANG, B. Rosemary: A

Robust, Secure, and High-Performance Network Operating Sys-

tem. In CCS’14 (2014).

[44] SHIN, S., YEGNESWARAN, V., PORRAS, P., AND GU, G.

AVANT-GUARD: Scalable and Vigilant Switch Flow Manage-

ment in Software-Defined Networks. In CCS’13 (2013).

[45] SUN, X., AGARWAL, A., AND NG, T. S. E. Attendre: Miti-

gating Ill Effects of Race Conditions in Openflow via Queueing

Mechanism. In ANCS ’12.

[46] TSAFRIR, D., HERTZ, T., WAGNER, D., AND SILVA, D.

Portably Solving File TOCTTOU Races with Hardness Ampli-

fication. In FAST’08 (2008).

[47] VISSER, W., PǍSǍREANU, C. S., AND KHURSHID, S. Test

input generation with java pathfinder. In ISSTA’04 (2004).

[48] WANG, H., XU, L., AND GU, G. FloodGuard: A DoS Attack

Prevention Extension in Software-Defined Networks. In DSN’15

(2015).

[49] WEAVER, N., SOMMER, R., AND PAXSON, V. Detecting Forged

TCP Reset Packets. In NDSS’09 (2009).

[50] WU, A., D. LEVIN, S. S., AND FELDMANN, A. Troubleshoot-

ing Blackbox SDN Control Software with Minimal Causal Se-

quences. In SIGCOMM’14 (2014).

[51] YANG, J., CUI, A., STOLFO, S., AND SETHUMADHAVAN, S.

Concurrency Attacks. In n USENIX Workshop on Hot Topics in

Parallelism ’12 (2012).

A Tested SDN Applications

Table 7: Tested SDN Applications

Controller Application Name Location

Floodlight

Switch Manager net.floodlightcontroller.core.internal
Link Manager net.floodlightcontroller.linkdiscovery
Host Manager net.floodlightcontroller.devicemanager
Topology Manager net.floodlightcontroller.topology
Forwarding net.floodlightcontroller.forwarding
LoadBalancer net.floodlightcontroller.loadbalancer
Firewall net.floodlightcontroller.firewall
DHCP Server net.floodlightcontroller.dhcpserver
AccessControlList net.floodlightcontroller.accesscontrollist
Static Route Pusher net.floodlightcontroller.staticflowentry
Statistics net.floodlightcontroller.statistics

OpenDaylight

Switch Manager org.opendaylight.controller.switchmanager
Statistics Manager org.opendaylight.controller.statisticsmanager
Topology Manager org.opendaylight.controller.topologymanager
ForwardingRulesManager org.opendaylight.controller.forwardingrulesmanager
HostTracker org.opendaylight.controller.hosttracker
ArpHandler org.opendaylight.controller.arphandler
LoadBalancerService org.opendaylight.controller.samples.loadbalancer
SimpleForwardingImpl org.opendaylight.controller.samples.simpleforwarding
Static Routing org.opendaylight.controller.forwarding.staticrouting

ONOS

OpenFlow Controller org.onosproject.openflow.controller.impl
Switch Manager org.onosproject.store.device.impl
Host Manager org.onosproject.store.host.impl
Packet Manager org.onosproject.store.packet.impl
Link Manager org.onosproject.store.link.impl
ProxyArp org.onosproject.proxyarp
ReactiveForwarding org.onosproject.fwd
HostMobility org.onosproject.mobility
SegmentRouting org.onosproject.segmentrouting
ACL org.onosproject.acl
DHCP org.onosproject.dhcp
DHCPRelay org.onosproject.dhcprelay
FaultManagement org.onosproject.faultmanagement
FlowAnalyzer org.onosproject.flowanalyzer

	Introduction
	Background
	State Manipulation Attacks
	Threat Model
	Adversarial Event Generation
	Attack Cases
	Stealing Privacy Information
	Disrupting Packet Processing Service

	ConGuard Overview
	Pinpointing Harmful Race Conditions
	Modeling the SDN Control Plane
	Detecting Race State Operations
	Adversarial State Racing

	Remotely Triggering Harmful Race Conditions
	Trigger Correlation
	Exploitation

	Implementation
	Evaluation
	Detection Results
	Comparing With Existing Techniques
	ConGuard Runtime Performance
	Impact Analysis of the Detected Vulnerabilities
	Remote Exploitation Analysis
	Case Studies

	Defense Schemes
	Limitations and Discussion
	Related Work
	Conclusion
	Tested SDN Applications

